
The Central Processing Unit:
What Goes on Inside the Computer

CPU
Lecture 2 Chapter 1

Microprocessor

• CPU etched on a chip
• Chip size is ¼ x ¼ inch
• Composed of silicon
• Contains millions of transistors

– Electronic switches that can allow current to pass
through

Moore Low
• Moore’s law states that the number of

transistors on a chip doubles every 18 months.
• This ‘‘law’’ is an observation by Intel cofounder

Gordon Moore of how fast process engineers at
the semiconductor companies are able to shrink
their transistors.

• Moore’s law has held for over three decades
now and is expected to hold for at least one
more.

• After that, the number of atoms per transistor
will become too small and quantum mechanics
will start to play a big role, preventing further
shrinkage of transistor sizes.

Building a Better
Microprocessor

• Computers imprint circuitry onto microchips
– Cheaper
– Faster

• Perform functions of other hardware
– Math coprocessor is now part of

microprocessor
– Multimedia instructions are now part of

microprocessor

Building a Better
Microprocessor

• The faster the computer runs
• The cheaper it is to make
• The more reliable it is

The more functions that are combined on
a microprocessor:

Types of
Microprocessors

Intel
• Pentium
• Celeron
• Xeon and Itanium

Intel-compatible
• Cyrix
• AMD

Types of
Microprocessors

• PowerPC
– Cooperative efforts of Apple, IBM, and

Motorola
– Used in Apple Macintosh family of PCs
– Found in servers and embedded systems

• Alpha
– Manufactured by Compaq
– High-end servers and workstations

Microprocessor
Components

• Control Unit – CU
• Arithmetic / Logic Unit – ALU
• Registers
• System clock

Data
Representation

On/Off
Binary number system is used
to represent the state of the

circuit

Bits, Bytes, Words

• BIT
– Binary DigIT
– On/off circuit
– 1 or 0

• BYTE
– 8 bits
– Store one alphanumeric character

• WORD
– Size of the register
– Number of BITS that the CPU processes as a unit

Coding Schemes

• ASCII
– Uses one 8 bit byte
– 28 = 256 possible combinations or characters
– Virtually all PCs and many larger computers

• EBCDIC
– Uses one 8 bit byte
– 28 =256 possible combinations or characters
– Used primarily on IBM-compatible mainframes

• Unicode
– Uses two 8 bit bytes (16 bits)
– 216 = 65,536 possible combinations or characters
– Supports characters for all the world’s languages
– Downward-compatible with ASCII

The CPU

Control Unit
CU

• Part of the hardware that is in-charge
• Directs the computer system to execute stored

program instructions
• Communicates with other parts of the hardware

Arithmetic / Logic Unit
ALU

Performs arithmetic operations

Performs logical operations

Arithmetic Operations

Addition
Subtraction

Multiplication
Division

Logical Operations

• Evaluates conditions
• Makes comparisons
• Can compare

– Numbers
– Letters
– Special characters

1 Bit ALU

Registers

Special-purpose
High-speed

Temporary storage
Located inside CPU

Instruction register

Holds instruction currently
being executed

Data register

Holds data waiting to be
processed

Holds results from processing

Inside the
CPU

Memory Registers
Register 0

Register 1
Register 2
Register 3

Temporary Memory.
Computer “Loads” data from
RAM to registers, performs

operations on data in registers,
and “stores” results from

registers back to RAM

Remember our initial example: “read value of A from memory; read
value of B from memory; add values of A and B; put result in memory
in variable C.” The reads are done to registers, the addition is done in
registers, and the result is written to memory from a register.

Inside the
CPU (cont.)

Memory Registers
Register 0
Register 1
Register 2
Register 3

Arithmetic
/ Logic

Unit

For doing basic
Arithmetic / Logic

Operations on Values stored
in the Registers

Inside the CPU
(cont.)

Memory Registers
Register 0

Register 1
Register 2
Register 3

Instruction Register

Arithmetic
/ Logic

Unit

To hold the current
instruction

Inside the
CPU (cont.)

To hold the
address of the

current instruction
in RAM

Memory Registers
Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Inside the CPU
(cont.)

Memory Registers
Register 0
Register 1
Register 2
Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

The Process Model

• A process is just an instance of an executing program,
including the current values of program counter,
registers, and variables.

• The CPU switches from program to program.
• This rapid switching back and forth is called

multiprogramming.

Multiprogramming four
Programs

Time
Pr

oc
es

s

A

C
B

D

One Program Counter

Four Program Counter

A CPU can really run only ne process at a time, if there are 2 cores Each of them can
run only one process at a time

The Register Set

A CPU is a sequential circuit

• repeatedly reads and executes an instruction from its memory

• fetch-and-execute cycle

A machine language program is a set of instructions drawn from

the CPU instruction set

• Each instruction consists of two parts: an opcode and

an address

11 instructions require a 4-bit opcode.

12 bits of the 16-bit word remain for addressing 212 = 4096

16-bit words of the RAM.

The CPU has 8 special registers:
• 16-bit accumulator (AC)
• 12-bit program counter (PC)
• 4-bit opcode (OPC)
• 12-bit memory address register (MAR)
• 16-bit memory data register (MDR)
• 16-bit input register (INR)
• 16-bit output register (OUTR)
• 1-bit halt register (HLT)

Exemple 16 bits

The Registers Data
Transfer in the CPU

The Control
Unit

• It all comes down to the Control Unit.

• This is just a State Machine.

• How does it work?

Machine Cycle

I-time
• CU fetches an instruction from memory and puts it

into a register
• CU decodes the instruction and determines the

memory location of the data required

Machine Cycle

E-time
• Execution

– CU moves the data from memory to registers in the
ALU

– ALU is given control and executes the instruction
– Control returns to the CU

• CU stores the result of the operation in memory
or in a register

Direct memory instruction
• Addresses refer directly to memory locations containing the

operands (data) on which the program operates

Indirect memory instructions
• Instructions in which an address is interpreted as the address

at which to find the address containing the needed operand

• CPU does two memory fetches
• the first to find the address of the operand

• the second to find the operand itself

The Fetch-and-Execute
Cycle

• Fetch-and-execute cycle has two portions

• instruction, whose address is in the PC, is fetched into the

MDR

• opcode portion of this register is copied into the OPC

The Control
Unit

• Control Unit State Machine has very simple
structure:

• 1) Fetch: Ask the RAM for the instruction
whose address is stored in IP.

• 2) Execute: There are only a small number
of possible instructions.
Depending on which it is, do
what is necessary to execute it.

• 3) Repeat: Add 1 to the address stored in
IP, and go back to Step 1 !

What is a FSM

• A Finite State Machine (FSM) is based on the idea of there being
finite number of states for a given system.

• For instance, when an application turns an LED on and off, two
states exist; one state is when the LED is on and the other is when it
is off.

• If it will turn on eight LEDs sequentially.
• Only one LED is on at a time, therefore eight states exist.
• Each state consists of one LED being turned on while all the rest are

off.

State variable

• State machines require a State Variable (SV).
• The SV is essentially a pointer that keeps track of the

state that the system is in.
• The SV can be modified in the software modules (or

states) themselves or by an outside function.
• The example firmware uses an outside function which

detects a button press to advance through the states.

State machine

state variable

next state logic

inputs from
environment

outputs to the environment

Next state

The Control Unit
is a State
Machine

Add
Load

Store
Goto…

… … … … …

Add 1
to IP

Fetch

Exec Exec Exec Exec Exec

The Fetch-and-
Execute Cycle

• Suppose OPC is a load accumulator instruction.

• the action required is to copy the word specified by the address part

of the instruction into the accumulator

• load accumulator is decomposed into 8 microinstructions

executed in 6 microcycles

System Clock

• System clock produces pulses at a fixed rate
• Each pulse is one Machine Cycle
• One program instruction may actually be several

instructions to the CPU
• Each CPU instruction will take one pulse
• CPU has an instruction set – instructions that it can

understand and process

A Simple Program

• Want to add values of variables a and b (assumed to
be in memory), and put the result in variable c in
memory, I.e. c a+b

• Instructions in program
– Load a into register r1
– Load b into register r3
– r2 r1 + r3
– Store r2 in c

Running the Program

a

c

2

1

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2005
Load a into r1

r1
r2
r3
r4

IR
IP

Logic

CPU

2

b

Running the Program

a

c

2

1

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2006
Load b into r3

r1
r2
r3
r4

IR
IP

Logic

CPU

3

b
2

Running the Program

a

c

2

1

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2007
r2 r1 + r3

r1
r2
r3
r4

IR
IP

Logic

CPU

3

b
2

5

Running the Program

a

c

2

1

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2008
Store r2 into c

r1
r2
r3
r4

IR
IP

Logic

CPU

3

b
2

5

Running the Program

a

c

2

5

3

Memory

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

2005
2006
2007
2008

2008
Store r2 into c

r1
r2
r3
r4

IR
IP

Logic

CPU

3

b
2

5

Finding Data in
Memory

• Each location in memory has a unique address
– Address never changes
– Contents may change

• Memory location can hold one instruction or piece of data
• Programmers use symbolic names

Speed and Power

What makes a computer fast?
• Microprocessor speed
• Bus line size
• Availability of cache
• Flash memory
• RISC computers
• Parallel processing

Computer Processing
Speed

Time to execute an instruction
• Millisecond
• Microsecond
• Nanosecond

– Modern computers
• Picosecond

– In the future

Microprocessor Speed

• Clock speed
– Megahertz (MHz)
– Gigahertz (GHz)

• Number of instructions per second
– Millions of Instructions Per Second (MIPS)

• Performance of complex mathematical operations
– One million floating-point operations per second

(Megaflop)

Cache

• Small block of very fast temporary memory
• Speed up data transfer
• Instructions and data used most frequently or

most recently

Cache

Step 1
Processor
requests
data or
instructions

Step 2
Go to address in main
memory and read

Step 3
Transfer to main CPU and cache

Next processor request
• Look first at cache
• Go to memory

P
R
O
C
E
S
S
O
R

R

A

M

Cache

Types of Cache

• Internal cache
– Level 1 (L1)
– Built into microprocessor
– Up to 128KB

• External cache
– Level 2 (L2)
– Separate chips
– 256KB or 512 KB
– SRAM technology
– Cheaper and slower than L1
– Faster and more expensive than memory

what is a TFLOP?

• TFLOP is a bit of shorthand for “teraflop,” which is a
way of measuring the power of a computer based
more on mathematical capability than GHz. A
teraflop refers to the capability of a processor to
calculate one trillion floating-point operations per
second.

• Saying something has “6 TFLOPS,” for example,
means that its processor setup is capable of handling
6 trillion floating-point calculations every second, on
average.

What are floating-point
calculations?

• From a computational standpoint, a floating-point
calculation is any finite calculation that uses floating-
point numbers, particularly decimals.

• This is far more useful than looking at fixed-point
calculations (which use only whole integers), because
the work that computers do frequently involves finite
floating-point numbers and all their real world
complications.

FLOPS

• FLOPS measure how many equations involving
floating-point numbers that a processor can solve in
one second.

• A traditional calculator, for example, may need only
around 10 FLOPS for all its operations.

• So when we start talking about megaflops (a million
floating-point calculations), gigaflops (a billion) and
teraflops (a trillion), you can start to see what sort of
power we’re talking about.

The Top 10 Supercomputers

• The world’s fastest “supercomputer“ has a computing power of
122,300 teraflops, i.e. it can carry out 122,000 trillion floating point
operations per second.

• While that only sounds like Chinese to the uninformed ear, Summit,
the computer topping the current TOP500 ranking of
supercomputers, is not located in China.

• Even though the far eastern country is one of the most important
hubs for supercomputing, the United States, its direct competitor in
the never-ending run for the world’s most powerful calculator, is
currently home of the aforementioned supercomputer which was
revealed at the Oak Ridge National Laboratory yesterday.

• Supercomputers are used to run complicated simulations that
involve a large number of variables. Common use cases include
economic and climate modeling, neurological research and nuclear
science.

https://www.top500.org/lists/2018/06/
https://www.statista.com/statistics/264445/number-of-supercomputers-worldwide-by-country/

BUSES
Lecture 2 Chapter 2

61

Buses

• Concept is to link together multiple functional units
over a common data highway at a lower cost than
using multiple point to point links

A

B

D

E

C

Bus
A

B

D

E

C

OR

Number of Links = n * (n – 1) / 2

Computer Buses

– A bus is a common electrical pathway between
multiple devices.

• Can be internal to the CPU to transport data to and
from the ALU.

• Can be external to the CPU, to connect it to memory or
to I/O devices.

– Early PCs had a single external bus or system bus.
– Modern PCs have a special-purpose bus between

the CPU and memory and (at least) one other bus
for the I/O devices.

Bus Line

• Paths that transport electrical signals
• System bus

– Transports data between the CPU and memory

• Bus width
– Number of bits of data that can be carried at a time
– Normally the same as the CPUs word size

• Speed measured in MHz

Bus Line

CPU can support a greater number and variety of
instructions

Larger bus width = More powerful
computer

CPU can transfer more
data at a time = Faster computer

CPU can reference
larger memory

addresses
= More memory

available

PC Buses and Ports

ISA Slow-speed devices like mouse, modem

PCI High-speed devices like hard disks and network cards

AGP Connects memory and graphics card for faster video
performance

USB Supports “daisy-chaining” eliminating the need for
multiple expansion cards; hot-swappable

IEEE 1394
(FireWire)

High-speed bus connecting video equipment to the
computer

PC Card Credit card sized PC card devices normally found on
laptops

Computer Buses

– A number of buses are in widespread use in the
computer world.

• Multibus (8086)
• IBM PC (PC/XT)
• ISA bus (PC/AT)
• EISA bus (80386)
• Microchannel (PS/2)
• PCI bus (Many PCs)
• Nubus (macintosh)
• Universal Serial Bus (modern PCs)
• FireWire (consumer electronics)

Computer Buses

Traditional (ISA)
(with cache)

Buffers data
transfers between
system, expansion
bus

This approach breaks down as I/O devices need higher performance

Computer Buses

– In order to make it possible for boards designed by
third parties to attach to the system bus, there
must be well-defined rules about how the bus
works, and which all attached devices must obey.

– These rules are called the bus protocol.
– In addition, there must be mechanical and

electrical specifications.

Bus Interconnection
Scheme

Data Bus

• Carries data
– Remember that there is no difference between

“data” and “instruction” at this level
• Width is a key determinant of performance

– 8, 16, 32, 64 bit
– What if the data bus is 8 bits wide but instructions

are 16 bits long?
– What if the data bus is 64 bits wide but

instructions are 16 bits long?

Address bus

• Identify the source or destination of data
– In general, the address specifies a specific memory address or a

specific I/O port
• e.g. CPU needs to read an instruction (data) from a given

location in memory
• Bus width determines maximum memory capacity of system

– 8086 has 20 bit address bus but 16 bit word size for 64k directly
addressable address space

– But it could address up to 1MB using a segmented memory model
• RAM: 0 – BFFFF, ROM: C0000 - FFFFF
• DOS only allowed first 640K to be used, remaining memory for BIOS,

hardware controllers. Needed High-Memory Manager to “break the 640K
barrier”

Control Bus

• Control and timing information
– Determines what modules can use the data and address lines
– If a module wants to send data, it must (1) obtain permission to use the

bus, and (2) transfer data – which might be a request for another module
to send data

• Typical control lines
– Memory read
– Memory write
– I/O read
– I/O write
– Interrupt request
– Interrupt ACK
– Bus Request
– Bus Grant
– Clock signals

Engr 4862 Microprocessors

8088 / 8086 CPU in Min
Mode

Expansion Buses

• Connect the motherboard to expansion slots
• Plug expansion boards into slots

– interface cards
– adapter cards

• Provides for external connectors / ports
– Serial
– Parallel

Expansion Buses

Computer Buses

– Some devices that attach to a bus are active and
can initiate bus transfers. They are called masters.

– Some devices are passive and wait for requests.
They are called slaves.

– Some devices may act as slaves at some times and
masters at others.

– Memory can never be a master device.

Computer Buses

• The binary signals that computer devices output are
frequently not strong enough to power a chip.
– The bus may be relatively long or have several

devices attached to it.
– Most bus masters are connected to the bus by a

chip called a bus driver which is essentially a
digital amplifier.

– Most slaves are connected to the bus by a bus
receiver.

Computer Buses

– For devices which can be both master and slave, a
device called a bus transceiver is used.

– These bus interface devices are often tri-state
devices to allow them to disconnect when they
are not needed.

– A bus has address, data, and control lines, but
there is not necessarily a one-to-one mapping
between CPU pins and bus lines. A decoder chip
between CPU and bus would be needed in this
case.

Bidirectional
Buffer

(74LS245)

Bus Width

– The more address lines a bus has, the more
memory the CPU can address directly.

– If a bus has n address lines, then the CPU can use
it to address 2n different memory locations.

– Larger buses are more expensive:
• they need more wires
• they take up more space on the motherboard
• they need bigger connectors
• Early PC buses did not contain enough address lines

leading several backward compatible upgrades to the
bus.

Bus Width

84

Tri-state Logic Outputs

• Since we can have multiple masters on a bus, we need
Tri-state logic for attachment to a bus so that each
device can choose to drive or not drive the bus
depending on whether it is the bus master for a given
bus cycle

• Tri-state logic prevents a bus conflict where one device
is driving a signal to 1 and another device is driving it to
0 at the same time - generates high current through
wires (and smoke?)

85

Tri-State Logic

• The problem with connecting multiple “normal”
outputs together on a bus is that each has to be in
one logic state (0) or the other (1) - driving voltage
on each bus signal high or low

• This represents a conflict over the state of the signal
• We resolve this conflict with tri-state logic

+5v

0v

output

Logically

A A

enable

Electrically Truth Table

enable A Output
0 0 (Z)
0 1 (Z)
1 0 1
1 1 0

86

Tri-State Logic and Buses

• The logical element has output enable pin to go from
a floating output to drive the output from the circuit

• Inverters and buffers are used as bus drivers or
buffers

– Two such drivers or buffers in opposite directions are used
to make the connection bi-directional

– The gates also provide more “drive” onto the bus so that
the bus signals are stronger and the bus can be longer

enableout

enablein

Device Bus

87

Tri-State Logic and Buses

Bus Width

– The number of data lines needed also tends to
increase over time.

– There are two ways to increase the data
bandwidth of a bus:

• decrease the bus cycle time
• increase the data bus width

– Speeding up the bus results in problems of bus
skew since data on individual lines travel at slightly
different speeds. This also makes the bus non-
compatible with pre-existing devices.

Bus Width

– Therefore, an increased data width is the usual
answer (e.g. in the PC which went from 8 data
lines to 16 and then to 32 on essentially the same
bus).

– Another solution is to use a multiplexed bus.
– The same lines are used for both data and

addressing by breaking up the bus operation into
multiple steps. This slows down bus performance.

Timing

• Co-ordination of events on bus
• Synchronous

– Events determined by clock signals
– Control Bus includes clock line
– A single 1-0 is a bus cycle
– All devices can read clock line
– Usually sync on leading edge
– Usually a single cycle for an event

In reality, the clock is a bit more sawtoothed

100 million cycles per second
1 cycle in (1/100,000,000) seconds = 0.0000001s = 10 ns

Bus Clocking

– Buses can be divided up into two categories
depending on their clocking.

– A synchronous bus has a line driven by a crystal
oscillator.

• The signal on this line consists of a square wave with a
frequency of 5 - 100 MHz.

• All bus activities take an integral number of these
cycles, called bus cycles.

– The asynchronous bus does not have a master
clock. Bus cycles can be of any length required and
need not be the same.

Bus Clocking

• This ends the read.
– A set of signals that interlocks in this way is called

a full handshake.
– Full handshakes are timing independent. Each

event is caused by a prior event, not by a clock
cycle.

– Despite the advantages of asynchronous buses,
most buses are synchronous since they are easier
to build, and since there is such a large investment
in synchronous bus technology.

Bus Clocking

– Consider a synchronous bus with a 40-MHz clock,
which gives a clock cycle of 25 nsec.

– Assume reading from memory takes 40 nsec from
the time the address is stable.

• It takes three bus cycles to read a word.
– MREQ’ indicates that memory is being accessed.

RD’ is asserted for reads and negated for writes.
WAIT’ inserts wait states (extra bus cycles) until
the memory is finished

Bus Clocking

– Although synchronous buses are easy to work with
due to their discrete time intervals, they also have
some problems.

• Everything works in multiples of the bus clock.
• If a CPU and memory can complete a transfer in 3.1

cycles they have to stretch it to 4.0 because fractional
cycles are forbidden.

• Once a bus cycle has been chosen, and memory and I/O
cards have been built for it, it is difficult to take
advantage of future improvements in technology. The
bus has to be geared to the slowest devices (legacy
devices) on the bus.

Bus Clocking

– Mixed technology can be handled by going to an
asynchronous bus.

– The master device asserts MREQ’, RD’, etc. and
then asserts MSYN’ (Master SYNchronization).

• Seeing this, the slave device starts to work.
• When it is finished it asserts SSYN’ (Slave

SYNchronization).
• Seeing this, the master reads the data.
• When it is done, it negates MREQ’, RD’, the address

lines, MSYN’ and SSYN’.

Synchronous -
Disadvantages

• Although synchronous clocks are simple, there are
some disadvantages
– Everything done in multiples of clock, so

something finishing in 3.1 cycles takes 4 cycles
– With a mixture of fast and slow devices, we have

to wait for the slowest device
• Faster devices can’t run at their capacity, all devices are

tied to a fixed clock rate
• Consider memory device speed faster than 10ns, no

speedup increase for 100Mhz clock
• One solution: Use asynchronous bus

Synchronous Timing Diagram
Read Operation Timing

delay

Indicates read/address lines valid, noticed by memory

Indicates we want to read, not write

Address from memory we want

Data from memory

Indicates data lines valid

Bus Clocking

Asynchronous Bus

• No clock
• Occurrence of one event on the bus follows and

depends on a previous event
• Requires tracking of state, hard to debug, but

potential for higher performance

• Also used with networking
– Problem with “drift” and loss of synchronization
– Some use self-clocking codes, e.g. Ethernet

Asynchronous
Timing Diagram

Master sync

Slave sync

Asserted once read/address lines stabilize

Slave = memory, ACK’s master sync
Master reads the data from the data bus

Slave places requested data on bus

Deasserted when finished reading

Bus Arbitration

– I/O chips have to become bus master to read and
write memory and to cause interrupts.

– If two or more devices want to become bus
master at the same time, a bus arbitration
mechanism is needed.

– Arbitration mechanisms can be centralized or
decentralized. A simple form of centralized
arbitration is shown on the next slide.

• When the arbiter sees that one or more devices want
to become master, it issues a grant by asserting the bus
grant line.

Bus Arbitration

Bus Arbitration

– In the first scheme shown, the closest device
always wins.

– In the second scheme, there are multiple levels of
priority. A device assert the line for its priority, and
the arbiter grants the request by asserting the line
with the highest priority.

– Since the CPU must compete for the device on
most every cycle (i.e. it must read a word of
memory) the memory is often put on a separate
bus from the I/O devices so it doesn’t have to
compete.

Bus Arbitration

– Decentralized bus arbitration is also possible.
• A computer could have 16 prioritized bus request lines.

When a device wants to use the bus, it assert its
request line.

• All devices monitor all request lines, so at the end of
each bus cycle, each device knows whether it was the
highest priority requester.

• This method avoids the necessity of an arbiter, but
requires more bus lines.

• Another decentralized scheme equivalent to the daisy
chain arbitration minus the arbiter is shown on the
following slide.

Bus Arbitration

Bus Operations

– Up until now, we have only considered ordinary
bus cycles, with a master reading from a slave or
writing to one. In fact, several other kinds of bus
cycles exist.

– Normally one word at a time is transferred.
However, when caching is used it is often desirable
to fetch an entire cache line at once.

• Block transfers can often be more efficient than
successive individual transfers. The master puts the
number of words to be transferred on the data lines
during the first bus cycle.

Bus Operations

Bus Operations

– Another important kind of bus cycle is for handling
interrupts. When the CPU commands an I/O
device to do something, it usually expects an
interrupt when the work is done. The interrupt
signaling requires the bus.

– Since multiple devices may want to cause an
interrupt simultaneously, the same kind or
arbitration problems we had with ordinary bus
cycles are present.

• The usual solution is to assign priorities and use a
centralized arbiter.

Bus Operations

– Standard interrupt controller chips exist and are
widely used.

– The IBM PC and all its successors use the Intel
8259A chip.

– Up to eight I/O controllers can be directly
connected to the eight IR inputs to the 8259A.
When one of these devices wants to cause an
interrupt, it asserts its input line.

• When one or more interrupts are asserted, the 8259A
asserts INT which drives the interrupt pin on the CPU.

Bus Operations

– When the CPU is able to handle the interrupt, it
sends back a pulse on INTA.

– At that point, the 8259A specifies which input
caused the interrupt by outputting the input’s
number on the data bus.

– The CPU uses that number to index into a table of
pointers called interrupt vectors, to find the
address of the procedure to run to service the
interrupt.

• Several 8259As can be cascaded to handle more than
eight I/O devices.

Bus Operations

MEMORY
Lecture 2 Chapter 3

Memory

Types of Storage

• Secondary
– Data that will eventually be used
– Long-term

• Memory
– Data that will be used in the near future
– Temporary
– Faster access than storage

• Registers
– Data immediately related to the operation being executed
– Faster access than memory

Measuring
Storage Capacity

KB – kilobyte
• 1024 bytes
• Some diskettes
• Cache memory

MB – megabyte
• Million bytes
• RAM

GB – gigabyte
• Billion bytes
• Hard disks
• CDs and DVDs

TB – terabytes
• Trillion bytes
• Large hard disks

Memory
Many Names

Primary storage
Primary memory

Main storage
Internal storage
Main memory

Main Types of Memory

RAM
Random Access Memory

ROM
Read Only Memory

RAM

• Requires current to retain values
• Volatile
• Data and instructions can be read and

modified
• Users typically refer to this type of memory

What’s in RAM?

• Operating System
• Program currently running
• Data needed by the program
• Intermediate results waiting to be output

ROM

• Non-volatile
• Instructions for booting the computer
• Data and instructions can be read, but not modified
• Instructions are typically recorded at factory

123

124

Memory

125

Introduction

• Memory Devices
(RAM,ROM,PROM,EPROM)

• Storage Devices (Auxiliary Storage
Devices-Magnetic Tape, Hard Disk, Floppy
Disk .Optical Disks: CD-R Drive,CD-RW
disks,DVD,Blue ray Discs)

126

127

Characteristics of
Storage Devices

• Speed
• Volatility
• Access method
• Portability
• Cost and capacity

128

Basic Units Of
Measurement

• Bit
Binary digit
Smallest unit of measurement
Two possible values 0 1

on offOR

•Byte

•8 bits

129

Small Units Of
Measurement
(Processor And Memory
Speed)

Millisecond (ms) – a thousandth of a second
(1/1,000 = 10-3)

Microsecond (μs) - a millionth of a second
(1/1,000,000 = 10-6)

Nanosecond (ns) – a billionth of a second
(1/1,000,000,000 = 10-9)

130

Large Units Of
Measurement
(Memory, Storage)

• Note: powers of two are used because
computer memory and storage are based on
the basic unit (bit).

• Kilobyte (KB) – a thousand bytes (1,024 = 210)
• Megabyte (MB) - a million (1,048,576 = 220)

131

Large Units Of
Measurement
(Memory, Storage)

• Gigabyte (GB) – a billion (1,073,741,824 = 230)
– ~ A complete set of encyclopedias requires

about 700 MB of storage
– ~ 30 minutes of video (1/4 of the information

stored on a typical DVD)

132

Large Units Of
Measurement
(Memory, Storage)

• Terabyte (TB) – a trillion (1,099,511,627,776 =
240)
– ~ 20 million four-drawer filing cabinets full of

text
– ~ 200 DVD’s of information

133

• Memory Devices
– Memory: Is one or more sets of chips

that store data/program instructions,
either temporarily or permanently .

– It is critical processing component in
any computer

– PCs use several different types

RAM,ROM,PROM,
EPROM

134

RAM,ROM,PROM
,EPROM

• Memory Devices
– Two most important are

• RAM(Random Access Memory)
• ROM(Read-only Memory)

– They work in different ways and perform
distinct functions

– CPU Registers
– Cache Memory

135

RAM

• RAM is packaged as a chip.
• Basic storage unit is a cell (one bit per cell).
• Multiple RAM chips form a memory.
• Random Access Memory

Volatile
Used for temporary storage
Typical ranges 256 MB - 4 GB

• Random Access means direct access to any
part of memory

RAM

220

bytes of
RAM

(1 Mega-byte)
Write

Address

Data input Data Output

20 bits of
address

8 bits (1 byte)
of data

RAM

• When you talk about the memory of a computer, most often you’re
talking about its RAM.

• If a program is stored in RAM, that means
that a sequence of instructions are stored in consecutively
addressed bytes in the RAM.

• Data values (variables) are stored anywhere in RAM, not necessarily
sequentially

• Both instructions and data are accessed from RAM using addresses

• RAM is one (crucial) part of the computer’s
overall architecture

138

Nonvolatile
Memories(ROM)

• DRAM and SRAM are volatile memories
– Lose information if powered off.

• Nonvolatile memories retain value even if powered
off.
– Generic name is read-only memory (ROM).
– Misleading because some ROMs can be

read and modified.

139

Nonvolatile
Memories(ROM)

• Types of ROMs
– Programmable ROM (PROM)
– Eraseable programmable ROM (EPROM)
– Electrically eraseable PROM (EEPROM)
– Flash memory (used in portable digital devices)

• Firmware (Program instruction used frequently)
– Program stored in a ROM

• Boot time code, BIOS (basic input/output
system)

• graphics cards, disk controllers.

140

Memory

141

Storage Vs. Memory

Memory (e.g., RAM)

•Keep the information for a shorter period of
time (usually volatile)
•Faster
•More expensive

142

3. Storage Vs. Memory

Storage (e.g., Hard disk)

• The information is retained
longer (non-volatile)

• Slower
• Cheaper

143

Categories
Of Storage

• Magnetic
– Floppy disks
– Zip disks
– Hard drives

• Optical
– CD-ROM
– DVD

• Solid state storage devices
– USB Key (a very common form of solid state

storage)

Magnetic
Storage

• Exploits duality of magnetism and electricity
– Converts electrical signals into magnetic charges
– Captures magnetic charge on a storage medium
– Later regenerates electrical current from stored

magnetic charge
• Polarity of magnetic charge represents bit values zero

and one

144

145

Magnetic Drives

146

Magnetic Disk

• Flat, circular platter with metallic coating that is
rotated beneath read/write heads

• Random access device; read/write head can be moved
to any location on the platter

• Hard disks and floppy disks
• Cost performance leader for general-purpose

on-line secondary storage

147

1. Magnetic Drives: Storage Capacities

•Floppy disks

–~ 1 MB
•Hard drives

–~80 – 500 GB (TB is possible but very rare)

Floppy Disks

• A floppy disk is a portable, inexpensive storage
medium that consists of a thin, circular, flexible
plastic disk with a magnetic coating enclosed in a
square-shaped plastic shell.

148

Structure Of Floppy
Disks

• Initially Floppy disks were 8-inches wide, they then
shrank to 5.25 inches, and today the most widely used
folly disks are 3.5 inches wide and can typically store 1.44
megabytes of data.

• A folly disk is a magnetic disk, which means that it used
magnetic patterns to store data.

• Data in floppy disks can be read from and written to.
• Formatting is the process of preparing a disk for reading

and writing.
• A track is a narrow recording band that forms a full circle

on the surface of the disk.

149

150

Hard Disks

• Another form of auxiliary storage is a hard disk. A
hard disk consists of one or more rigid metal plates
coated with a metal oxide material that allows data
to be magnetically recorded on the surface of the
platters.

• The hard disk platters spin at a high rate of speed,
typically 5400 to 7200 revolutions per minute
(RPM).

• Storage capacities of hard disks for personal
computers range from 10 GB to 120 GB (one billion
bytes are called a gigabyte).

151

sectors
each track is
divided into pie-
shaped wedges

cluster
two or more
sectors
combined

tracks
data is recorded in
concentric circular
bands

152

Optical Mass Storage
Devices

• Store bit values as variations in light reflection
• Higher areal density & longer data life than magnetic

storage
• Standardized and relatively inexpensive
• Uses: read-only storage with low performance

requirements, applications with high capacity
requirements & where portability in a standardized format
is needed

153

Optical Drives

•CD's (Compact Disk)
~ 700 MB storage
–CD-ROM (read only)
–CD-R: (record) to a CD
–CD-RW: can write and erase CD to reuse it (re-

writable)

•DVD(Digital Video Disk)

154

Compact Discs
(CD)

• A compact disk (CD), also called an optical disc, is a
flat round, portable storage medium that is usually
4.75 inch in diameter.

• A CD-ROM (read only memory), is a compact disc that
used the same laser technology as audio CDs for
recording music. In addition it can contain other
types of data such as text, graphics, and video.

• The capacity of a CD-ROM is 650 MB of data.

155

DVD-ROM
– Over 4 GB storage (varies with

format)
– DVD- ROM (read only)
– Many recordable formats (e.g.,

DVD-R, DVD-RW; ..)
– Are more highly compact than

a CD.
– Special laser is needed to read

them

DVD (Digital
Video Disk)

Blu-ray Technology

• Name
Derived from the blue-violet laser used to read and
write data.
– Developed by the Blu-ray Disc Association with

more than 180 members.
• Dell
• Sony
• LG

156

Blu-ray Technology
Cont.

• Data capacity
– Because Blu-ray uses a

blue laser(405
nanometers) instead of a
red laser(650
nanometers) this allows
the data tracks on the
disc to be very compact.

– This allows for more
than twice as small pits
as on a DVD.

157

Blu-ray Technology
Cont.

• BD-ROM (read-only) - for pre-recorded content
• BD-R (recordable) - for PC data storage
• BD-RW (rewritable) - for PC data storage
• BD-RE (rewritable) - for HDTV recording

158

Formats

COMPUTER ARCHITECTURE
Lecture 2 Chapter 4

Computer
Architecture

Input/
Output
DevicesBus

CPU

RAM

Central Processing
Unit

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

The Bus

Bus

• Suppose CPU needs to check to see if the user
typed anything.

CPU Keyboard Display

The Bus

Bus

• CPU puts “Keyboard, did the user type
anything?” (represented in some way) on the Bus.

CPU Keyboard Display

“Keyboard, did the user type anything?”

The Bus

Bus

• Each device (except CPU) is a State Machine
that constantly checks to see what’s on the Bus.

CPU Keyboard Display

“Keyboard, did the user type anything?”

The Bus

Bus

Keyboard notices that its name is on the Bus,
and reads info. Other devices ignore the info.

CPU Keyboard Display

“Keyboard, did the user type anything?”

The Bus

Bus

• Keyboard then writes “CPU: Yes, user typed ‘a’.”
to the Bus.

CPU Keyboard Display

“CPU: Yes, user typed ‘a’.”

The Bus

Bus

• At some point, CPU reads the Bus, and gets
the Keyboard’s response.

CPU Keyboard Display

“CPU: Yes, user typed ‘a’.”

Computer
Architecture

Bus CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

Putting it all
together

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

The RAM is the
computer’s main
memory.

This is where
programs and data are
stored.

Bus

CPU

RAM

Keyboard

Hard
Disk

Display

CD-ROM

• The CPU goes in a never-
ending cycle, reading
instructions from RAM and
executing them.

• This cycle is
orchestrated by
the Control Unit
in the CPU.

Memory Registers
Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

• It simply looks at where IP
is pointing, reads the
instruction there from
RAM, and executes it.

Memory Registers
Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

• To execute an instruction, the
Control Unit uses the ALU plus
Memory and/or the Registers.

Memory Registers
Register 0

Register 1

Register 2

Register 3

Instruction Register
Instr. Pointer (IP)

Arithmetic
/ Logic

Unit

Control Unit
(State Machine)

Programming

Where we are

• Examined the hardware for a computer
– Truth tables
– Logic gates
– States and transitions in a state machine
– The workings of a CPU and Memory

• Now, want to program the hardware

Programs and
Instructions

• Programs are made up of instructions

• CPU executes one instruction every clock cycle

• Modern CPUS do more, but we ignore that

• Specifying a program and its instructions:

• Lowest level: Machine language

• Intermediate level: Assembly language

• Typically today: High-level programming
language

Specifying a
Program and its

Instructions
• High-level programs: each statement

translates to many instructions
• E.g. c a + b to:

• Assembly language: specify each machine
instruction, using mnemonic form
• E.g. Load r1, A

• Machine language: specify each machine
instruction, using bit patterns
• E.g. 1101101000001110011

Load a into r1
Load b into r3
r2 r1 + r3
Store r2 into c

Machine/Assembly
Language

• We have a machine that can execute
instructions

• Basic Questions:

• What instructions?

• How are these instructions represented to
the computer hardware?

Complex vs Simple
Instructions

• Computers used to have very complicated
instruction sets – this was known as:

• CISC = Complex Instruction Set Computer

• Almost all computers 20 years ago were
CISC.

• 80s introduced RISC:

• RISC = Reduced Instruction Set Computer

Complex vs Simple
Instructions

• RISC = Reduced Instruction Set Computer

• Fewer, Less powerful basic instructions

• But Simpler, Faster, Easier to design CPU’s

• Can make “powerful” instructions by
combining several wimpy ones

• Shown to deliver better performance than
Complex Instruction Set Computer (CISC) for
several types of applications.

Complex vs Simple
Instructions

• Nevertheless, Pentium is actually CISC !

• Why?

Complex vs Simple
Instructions

• Nevertheless, Pentium is actually CISC !

• Why: Compatibility with older software

• Newer application types (media processing etc)
perform better with specialized instructions

• The world has become too complex to talk about
RISC versus CISC

Typical Assembly
Instructions

• Some common assembly instructions include:

• 1) “Load” – Load a value from RAM into
one of the registers

• 2) “Load Direct” – Put a fixed value in one of
the registers (as specified)

• 3) “Store” - Store the value in a specified
register to the RAM

• 4) “Add” - Add the contents of two
registers and put the result in a
third register

Typical Assembly
Instructions

• Some common instructions include:

• 5) “Compare” - If the value in a specified
register is larger than the
value in a second register, put a

“0” in Register r0

• 6) “Jump” - If the value in Register r0 is “0”,
change Instruction Pointer to the value in a given
register

• 7) “Branch” - If the value in a specified
register is larger than that

in another register, change IP
to a specified value

Machine
Languages

• Different types of CPU’s understand different
instructions
• Pentium family / Celeron / Xeon / AMD K6 / Cyrix …

(Intel x86 family)
• PowerPC (Mac)
• DragonBall (Palm Pilot)
• StrongARM/MIPS (WinCE)
• Many Others (specialized or general-purpose)

• They represent instructions differently in their
assembly/machine languages (even common ones)

• Let’s look instructions for a simple example CPU

	The Central Processing Unit:�What Goes on Inside the Computer
	CPU
	Microprocessor
	Moore Low
	Building a Better Microprocessor
	Building a Better Microprocessor
	Types of Microprocessors
	Types of Microprocessors
	Microprocessor Components
	Data Representation�On/Off
	Bits, Bytes, Words
	Coding Schemes
	The CPU
	Control Unit �CU
	Arithmetic / Logic Unit�ALU
	Arithmetic Operations
	Logical Operations
	1 Bit ALU
	Registers
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	The Process Model
	Multiprogramming four Programs
	The Register Set�
	Slide Number 28
	The Registers Data Transfer in the CPU�
	Slide Number 30
	Machine Cycle
	Machine Cycle
	Slide Number 33
	The Fetch-and-Execute Cycle�
	Slide Number 35
	What is a FSM
	State variable
	State machine
	Slide Number 39
	The Fetch-and-Execute Cycle�
	System Clock
	A Simple Program
	Running the Program
	Running the Program
	Running the Program
	Running the Program
	Running the Program
	Finding Data in Memory
	Speed and Power
	Computer Processing Speed
	Microprocessor Speed
	Cache
	Cache
	Types of Cache
	what is a TFLOP?�
	What are floating-point calculations?�
	FLOPS
	The Top 10 Supercomputers�
	Slide Number 59
	Buses
	Buses
	Computer Buses
	Bus Line
	Bus Line
	PC Buses and Ports
	Computer Buses
	Computer Buses
	Traditional (ISA)�(with cache)
	Computer Buses
	Slide Number 70
	Bus Interconnection Scheme
	Data Bus
	Address bus
	Control Bus
	8088 / 8086 CPU in Min Mode
	Expansion Buses
	Expansion Buses
	Computer Buses
	Computer Buses
	Computer Buses
	Bidirectional�Buffer�(74LS245)
	Bus Width
	Bus Width
	Tri-state Logic Outputs
	Tri-State Logic
	Tri-State Logic and Buses
	Tri-State Logic and Buses
	Bus Width
	Bus Width
	Timing
	Slide Number 91
	Bus Clocking
	Bus Clocking
	Bus Clocking
	Bus Clocking
	Bus Clocking
	Synchronous - Disadvantages
	Synchronous Timing Diagram�Read Operation Timing
	Bus Clocking
	Asynchronous Bus
	Asynchronous Timing Diagram
	Bus Arbitration
	Bus Arbitration
	Bus Arbitration
	Bus Arbitration
	Bus Arbitration
	Bus Operations
	Bus Operations
	Bus Operations
	Bus Operations
	Bus Operations
	Bus Operations
	Memory
	Memory
	Types of Storage
	Measuring Storage Capacity
	Memory�Many Names
	Main Types of Memory
	RAM
	What’s in RAM?
	ROM
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Characteristics of Storage Devices
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Nonvolatile Memories(ROM)
	Nonvolatile Memories(ROM)
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Magnetic Storage
	Magnetic Drives
	Magnetic Disk
	Magnetic Drives: Storage Capacities
	Floppy Disks
	Structure Of Floppy Disks
	Hard Disks
	Slide Number 151
	Optical Mass Storage Devices
	Optical Drives
	Compact Discs (CD)
	Slide Number 155
	Blu-ray Technology
	Blu-ray Technology Cont.
	Blu-ray Technology Cont.
	Computer Architecture
	Slide Number 160
	Slide Number 161
	Slide Number 162
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Programming
	Where we are
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Slide Number 180
	Slide Number 181
	Slide Number 182
	Slide Number 183
	Slide Number 184
	Slide Number 185
	Slide Number 186

